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Abstract 

It is shown that when classical charged particles move under the influence of their mutual 
gravitational and electromagnetic forces, the charge-to-mass ratio of each particle 
remains constant in the particle's instantaneous rest frame, despite the fact that in general 
the particles are accelerating and therefore presumably radiation energy. 

1. Introduction 

I t  is a well-known consequence of Maxwell's theory that when charged 
particles are accelerated they radiate energy. In view of the relativistic 
requirement of  the equivalence of energy and mass, one might wonder how 
elementary particles preserve their fixed elm ratios when subject to external 
forces. This wonderment is further increased when one realizes that mass 
can be transported through the vacuum not only by electromagnetic 
radiation but also by gravitational radiation, whereas neither of  these fields 
can transport  charge through the vacuum. 

At  first sight one might think that in view of the fact that the sharply 
defined e/m ratios observed in nature are undoubtedly due to the (as yet 
unknown) quantum effects which determine the structure of  the elementary 
particles, the conservation of e/m would require the introduction of 
quantum considerations for its elucidation. The purpose of this paper is 
to show that the above is not the case. We shall exhibit a simple and natural 
classical model of  interacting massive, charged particles and shall demon- 
strate that it is a consequence of the Einstein-Maxwell field equations that 
the charge-to-mass ratio shall remain constant in the instantaneous rest- 
frame of each particle. 

2. The Classical Model 

The one simplification we shall make in setting up the model is to 
approximate the discrete particles by arbitrary continuous distributions of  
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charge and mass. We do not assume that the charge and mass distributions 
are proportional for we want to approximate the interactions of particles 
with differing charge-to-mass ratios. One further simplifying assumption 
is that the motions of the particles is sufficiently non-turbulent that we can 
describe the world-lines of  the particles by a continuous time-like unit 
vector field Us(X~). 

In view of  the fact that the only interactions which we wish to consider 
are gravitation and electromagnetism, we assume for the total stress tensor 
the form 

TS~ = pm(X ~) Us W + T ~  (2.1) 
where pm(X ~') is proper mass density, T~  ~ is the Maxwell stress tensor, 
defined in terms of the Maxwell field F ~ by 

r ~  = F~S F ~' - �88 F ~  F~t3 (2.2) 

and U s ( x  ~) is a time-like unit vector field, i.e. 

U s U s = 1 (2.3) 

The gravitational field gu~ satisfies the Einstein field equations 

G s~ = T s~ (2.4) 

and the electromagnetic field F s~ satisfies the covariant Maxwell field 
equations 

Ft,~;~, + F~a;u + F~s;~ = 0 (2.5) 

Fu~;~ = p~(Z ~) U s (2.6) 

where pe(X ~) is the proper charge density. We wish to re-emphasize that 
we do not assume any relation between the distributions pm(X ~) and p~(X~). 

3. Proof of  Conservation 

With the model thus specified, we observe that it is generally covariant 
and gauge-invariant. Therefore, the corresponding Bianchi identities are 
valid. Namely, the covariant divergence of the left-hand sides of  both 
equations (2.4) and (2.6) are identically zero. It follows that the right-hand 
sides of those two equations must also vanish. Thus, from equation (2.4) 
we obtain 

(pro Us); s UV + P,, Ut* UV;s + T~;~ = 0 (3.1) 

and from equation (2.6) we obtain 

(Pc US);. = 0 (3.2) 

which is customarily called conservation of charge. Employing the Maxwell 
field equations (2.5) and (2.6) in the definition (2.2) we find the well-known 
result 

T~;  s = pe USF~ ~ (3.3) 
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From the antisymmetry of Fvv it follows immediately from equation (3.3) 

Uv TM ;~ = 0 (3.4) 

Differentiating the unit-vector condition, equation (2.3) we also have 

U~ U~;, = 0 (3.5) 

Thus contracting equation (3.1) with U~ and employing equations (2.3), 
(3.4) and (3.5) we find 

(Pro U");, = 0 (3.6) 

which we call conservation of matter. Mass, being equivalent to energy, 
cannot satisfy such a differential conservation law unless we also include the 
portion of the energy described by the Einstein pseudo-tensor contained 
in the gravitational field of the system. 

If we now eliminate the term U~';~ between the two equations (3.2) and 
(3.6) we find 

1 dpm_ 1 dp, (3.7) 
p~ ds Pe ds 

where we have introduced the notation dp/ds = p;~ U ~' to indicate that the 
differentiation is being performed along the world-line of the particle, 
and in the instantaneous rest frame reduces to the ordinary time derivative. 

Equation (3.7) can easily be rearranged to read 

ds 

which is what we proposed to demonstrate. Note that the value of the ratio 
Pe/Pm as  we move in directions normal to the world-lines of the particles 
is not determined, and can initially be assigned arbitrarily. 

Incidentally, if we substitute equations (3.3) and (3.6) into equation (3.1) 
we obtain 

Pm UV;# Ula + De U "  Fv ~ = 0 (3.9) 

Thus, the trajectories of the particles are exactly what one would expect 
from generalizing the second law of Newton, with the Lorentz expression 
for the applied force, to a curved space. In the present model however, 
the law of motion, equation (3.9), was not assumed, but was rather deduced 
as a consequence of the theory. 


